
© 2020 Arm Limited (or its affiliates)

Catalin Marinas
TLA+ Community Event 2020

A Formal Model of
Cache Speculation

Side-Channels

2 © 2020 Arm Limited (or its affiliates)

Introduction
Why a formal model of cache speculation side-channels:
• A (simpler) way to reason about the behaviour of a system and its security properties
• Allows exploring similar vulnerabilities at an abstract level in a unified way

• Same specification can cover Spectre variants and Meltdown

Aim for the formal model:
• Does the CPU specification guarantee the security properties under speculative

execution for any code sequence?

Not covered:
• Is a specific code sequence vulnerable under the CPU specification?

3 © 2020 Arm Limited (or its affiliates)

Spectre v1 Example
• Bypassing software checking of untrusted values (64-bit ARM assembly)

LDR X1, [X2] // X2 is a pointer to kernel_array->length

CMP X0, X1 // X0 holds untrusted_offset_from_user

BGE out_of_range

LDRB W4, [X5, X0] // X5 holds kernel_array->data

AND X4, X4, #1 // arithmetic ops on potentially private data

LSL X4, X4, #8

ADD X4, X4, #0x200

LDRB X7, [X8, X4] // X8 holds user_array->data, X4 secret-derived

out_of_range

4 © 2020 Arm Limited (or its affiliates)

Abstract Machine – State
• Constants (sets) and operation tables

𝐿𝐴𝐷𝐷𝑅𝑆 ≜ 𝑙1, 𝑙2, …
𝐻𝐴𝐷𝐷𝑅𝑆 ≜ ℎ1, ℎ2, …

𝐷𝐴𝑇𝐴 ≜ 𝑑1, 𝑑2, …
𝑅𝐸𝐺𝑆 ≜ {𝑟1, 𝑟2, … }

𝐴𝐷𝐷𝑅𝑆 ≜ 𝐿𝐴𝐷𝐷𝑅𝑆 ∪ 𝐻𝐴𝐷𝐷𝑅𝑆
𝑉𝐴𝐿𝑈𝐸𝑆 ≜ 𝐴𝐷𝐷𝑅𝑆 ∪ 𝐷𝐴𝑇𝐴 ∪ “𝑧𝑒𝑟𝑜”

𝑂𝑃𝑇𝐴𝐵𝐿𝐸𝑆 ≜ [𝑉𝐴𝐿𝑈𝐸𝑆 × 𝑉𝐴𝐿𝑈𝐸𝑆 → 𝑉𝐴𝐿𝑈𝐸𝑆]

• CPU security/privilege mode

𝒎𝒐𝒅𝒆 ∈ {“𝑙𝑜𝑤”, “ℎ𝑖𝑔ℎ”}

• CPU registers (array/function)

𝒓𝒆𝒈𝒔 ∈ [𝑅𝐸𝐺𝑆 → 𝑉𝐴𝐿𝑈𝐸𝑆]

• Memory (array/function)

𝒎𝒆𝒎 ∈ 𝐴𝐷𝐷𝑅𝑆 → 𝑉𝐴𝐿𝑈𝐸𝑆
𝒄𝒂𝒄𝒉𝒆𝒅 ∈ [𝐴𝐷𝐷𝑅𝑆 → 𝐵𝑂𝑂𝐿𝐸𝐴𝑁]

r1 r2 r3 r4 …

d2 d1 l1 h1 …

l1 l2 … h1 h2 …

d2 l1 … d3 h1 …

T F … F T …

Register

Value

Address

Value

Cached

5 © 2020 Arm Limited (or its affiliates)

Abstract Machine – Actions (state transitions)
• Sets of valid instructions (tuples of mnemonic and arguments)

𝐻𝑎𝑣𝑜𝑐 ≜ ”𝑺𝑬𝑻”, 𝑟, 𝑣 ∶ 𝑟 ∈ 𝑅𝐸𝐺𝑆, 𝑣 ∈ 𝑉𝐴𝐿𝑈𝐸𝑆
𝑀𝑜𝑣𝑒 ≜ ”𝑴𝑶𝑽”, 𝑟𝑡, 𝑟𝑚 ∶ 𝑟𝑡, 𝑟𝑚 ∈ 𝑅𝐸𝐺𝑆
𝐿𝑜𝑎𝑑 ≜ ”𝑳𝑫𝑹”, 𝑟𝑡, 𝑟𝑚 ∶ 𝑟𝑡, 𝑟𝑚 ∈ 𝑅𝐸𝐺𝑆 ∧ 𝐴𝑐𝑐𝑒𝑠𝑠𝑂𝐾 𝑟𝑒𝑔𝑠 𝑟𝑚
𝑆𝑡𝑜𝑟𝑒 ≜ ”𝑺𝑻𝑹”, 𝑟𝑡, 𝑟𝑚 ∶ 𝑟𝑡, 𝑟𝑚 ∈ 𝑅𝐸𝐺𝑆 ∧ 𝐴𝑐𝑐𝑒𝑠𝑠𝑂𝐾 𝑟𝑒𝑔𝑠 𝑟𝑚
𝑂𝑝 ≜ { ”𝑶𝑷”, 𝑟𝑡, 𝑟𝑚, 𝑟𝑛, 𝑜𝑝 ∶ 𝑟𝑡, 𝑟𝑚, 𝑟𝑛 ∈ 𝑅𝐸𝐺𝑆, 𝑜𝑝 ∈ 𝑂𝑃𝑇𝐴𝐵𝐿𝐸𝑆}

𝐸𝑥𝑐𝑒𝑝𝑡𝑖𝑜𝑛 ≜ 𝐼𝐹 𝑚𝑜𝑑𝑒 = “𝑙𝑜𝑤” 𝑇𝐻𝐸𝑁 ”𝑯𝑪𝑨𝑳𝑳” 𝐸𝐿𝑆𝐸 {⟨”𝑳𝑹𝑬𝑻”⟩}

• The set of all possible valid instructions

𝐼𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠 ≜ 𝐻𝑎𝑣𝑜𝑐 ∪ 𝑀𝑜𝑣𝑒 ∪ 𝐿𝑜𝑎𝑑 ∪ 𝑆𝑡𝑜𝑟𝑒 ∪ 𝑂𝑝 ∪ 𝐸𝑥𝑐𝑒𝑝𝑡𝑖𝑜𝑛

• Instruction dispatch/execution: 𝑬𝒙𝒆𝒄𝒖𝒕𝒆(𝑖𝑛𝑠𝑡𝑟)

6 © 2020 Arm Limited (or its affiliates)

Program Execution as Succession of States
• Initial SimpleCPU state

𝑰𝒏𝒊𝒕 ≜ ∧ 𝑚𝑜𝑑𝑒 = “𝑙𝑜𝑤”
∧ 𝑟𝑒𝑔𝑠 = [𝑟 ∈ 𝑅𝐸𝐺𝑆 ↦ ”𝑧𝑒𝑟𝑜”]
∧ 𝑚𝑒𝑚 ∈ 𝐴𝐷𝐷𝑅𝑆 → 𝑉𝐴𝐿𝑈𝐸𝑆
∧ 𝑐𝑎𝑐ℎ𝑒𝑑 = [𝑎 ∈ 𝐴𝐷𝐷𝑅𝑆 ↦ 𝐹𝐴𝐿𝑆𝐸]

• Next SimpleCPU step
𝑵𝒆𝒙𝒕 ≜ ∃𝑖𝑛𝑠𝑡𝑟 ∈ 𝐼𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠 ∶ 𝑬𝒙𝒆𝒄𝒖𝒕𝒆 𝑖𝑛𝑠𝑡𝑟

r1=0
r2=0
r3=0

SET r1,d1 SET r2,l1 HCALL SET r3,h1
r1=d1
r2=0
r3=0

r1=d1
r2=l1
r3=0

r1=d1
r2=l1
r3=0

r1=d1
r2=l1
r3=h1

OP r1,r3,r1
r1=h2
r2=l1
r3=h1

low high

𝝈0 𝝈1 𝝈3𝝈2 𝝈4 𝝈5

7 © 2020 Arm Limited (or its affiliates)

Abstract Model of Speculative Execution
• Speculative execution modelled as a “shadow” abstract machine (CPU) sharing the

mem and cached states with the executing machine but with a separate regs state
• Speculating machine supports a subset of Instructions, e.g. 𝐿𝑜𝑎𝑑 ∪ 𝑂𝑝

SET r3,h1
r1=d1
r2=l1
r3=0

r1=d1
r2=l1
r3=h1

Conditional branch, new code path

𝝈0 𝝈1 𝝈4

r1=d1
r2=l1
r3=h1

OP r1,r3,r1
r1=h2
r2=l1
r3=h1

LDR r1,[r1]
r1=d2
r2=l1
r3=h1

Spec state discarded
𝒓𝒆𝒈𝒔𝒔 = 𝒓𝒆𝒈𝒔𝒆

r1=d1
r2=l1
r3=h1

Executing (states in sync)
𝒓𝒆𝒈𝒔𝒔 = 𝒓𝒆𝒈𝒔𝒆

r1=d1
r2=l1
r3=0

Executing CPU

Speculating CPU

r1=d1
r2=l1
r3=h1

or delayed STR to mem[h2]regse
mem
cached
regss

Speculating (states differ)
𝒓𝒆𝒈𝒔𝒔 ≠ 𝒓𝒆𝒈𝒔𝒆

𝝈2 𝝈3

8 © 2020 Arm Limited (or its affiliates)

TLA+ Specification of Speculative Execution
• Speculating	machine	has	its	own	registers

𝐸𝑥𝑒𝑐𝐶𝑃𝑈 ≜ 𝑰𝑵𝑺𝑻𝑨𝑵𝑪𝑬 𝑆𝑖𝑚𝑝𝑙𝑒𝐶𝑃𝑈
𝑆𝑝𝑒𝑐𝐶𝑃𝑈 ≜ 𝑰𝑵𝑺𝑻𝑨𝑵𝑪𝑬 𝑆𝑖𝑚𝑝𝑙𝑒𝐶𝑃𝑈𝑾𝑰𝑻𝑯 𝑟𝑒𝑔𝑠 ← 𝑠𝑝𝑒𝑐𝑟𝑒𝑔𝑠

• Speculating registers state discarded on (committed) instruction execution
𝐸𝑥𝑒𝑐 𝑖𝑛𝑠𝑡𝑟 ≜ 𝐸𝑥𝑒𝑐𝐶𝑃𝑈! 𝐸𝑥𝑒𝑐𝑢𝑡𝑒 𝑖𝑛𝑠𝑡𝑟 ∧ 𝑠𝑝𝑒𝑐𝑟𝑒𝑔𝑠! = 𝑟𝑒𝑔𝑠!
𝑆𝑝𝑒𝑐 𝑖𝑛𝑠𝑡𝑟 ≜ 𝑆𝑝𝑒𝑐𝐶𝑃𝑈! 𝐸𝑥𝑒𝑐𝑢𝑡𝑒 𝑖𝑛𝑠𝑡𝑟 ∧ 𝑼𝑵𝑪𝑯𝑨𝑵𝑮𝑬𝑫 𝑟𝑒𝑔𝑠,𝑚𝑒𝑚

• Only certain instructions are available under speculation
𝐸𝑥𝑒𝑐𝐼𝑛𝑠𝑡𝑟 ≜ 𝐻𝑎𝑣𝑜𝑐 ∪ 𝑀𝑜𝑣𝑒 ∪ 𝐿𝑜𝑎𝑑 ∪ 𝑆𝑡𝑜𝑟𝑒 ∪ 𝑂𝑝 ∪ 𝐸𝑥𝑐𝑒𝑝𝑡𝑖𝑜𝑛
𝑆𝑝𝑒𝑐𝐼𝑛𝑠𝑡𝑟 ≜ 𝐿𝑜𝑎𝑑 ∪ 𝑂𝑝

• Either execution or speculation
𝑵𝒆𝒙𝒕 ≜ ∨ ∃𝑖𝑛𝑠𝑡𝑟 ∈ 𝐸𝑥𝑒𝑐𝐼𝑛𝑠𝑡𝑟 ∶ 𝐸𝑥𝑒𝑐 𝑖𝑛𝑠𝑡𝑟

∨ ∃𝑖𝑛𝑠𝑡𝑟 ∈ 𝑆𝑝𝑒𝑐𝐼𝑛𝑠𝑡𝑟 ∶ 𝑆𝑝𝑒𝑐 𝑖𝑛𝑠𝑡𝑟

9 © 2020 Arm Limited (or its affiliates)

Roles, States and Observations
Victim: high security mode (e.g. OS kernel)
• High mode state consists of CPU registers and high security memory

𝐻𝑖𝑔ℎ𝑆𝑡𝑎𝑡𝑒 ≜ 𝑟𝑒𝑔𝑠, [𝑎𝑑𝑑𝑟 ∈ 𝐻𝐴𝐷𝐷𝑅𝑆 ↦ 𝑚𝑒𝑚 𝑎𝑑𝑑𝑟]

• High mode input and output consist of CPU registers and low security memory

𝐼𝑛𝑝𝑢𝑡 ≜ 𝑟𝑒𝑔𝑠, [𝑎𝑑𝑑𝑟 ∈ 𝐿𝐴𝐷𝐷𝑅𝑆 ↦ 𝑚𝑒𝑚 𝑎𝑑𝑑𝑟]

𝑂𝑢𝑡𝑝𝑢𝑡 ≜ 𝑟𝑒𝑔𝑠, [𝑎𝑑𝑑𝑟 ∈ 𝐿𝐴𝐷𝐷𝑅𝑆 ↦ 𝑚𝑒𝑚 𝑎𝑑𝑑𝑟]

10 © 2020 Arm Limited (or its affiliates)

Roles, States and Observations
Attacker: low security mode (e.g. user application)
• Low mode state consists of CPU registers and user memory:

𝐿𝑜𝑤𝑆𝑡𝑎𝑡𝑒 ≜ 𝑟𝑒𝑔𝑠, [𝑎𝑑𝑑𝑟 ∈ 𝐿𝐴𝐷𝐷𝑅𝑆 ↦ 𝑚𝑒𝑚 𝑎𝑑𝑑𝑟]

• Without side-channels, the attacker can only observe the values in low memory:

𝐿𝑜𝑤𝑂𝑏𝑠 ≜ [𝑎𝑑𝑑𝑟 ∈ 𝐿𝐴𝐷𝐷𝑅𝑆 ↦ 𝑚𝑒𝑚 𝑎𝑑𝑑𝑟]
• With cache side-channels, the attacker can additionally observe the cached state of a

memory location (e.g. by measuring the access time)

𝐿𝑜𝑤𝑂𝑏𝑠 ≜ 𝑎𝑑𝑑𝑟 ∈ 𝐿𝐴𝐷𝐷𝑅𝑆 ↦ 𝑚𝑒𝑚 𝑎𝑑𝑑𝑟 , 𝑐𝑎𝑐ℎ𝑒𝑑 𝑎𝑑𝑑𝑟

11 © 2020 Arm Limited (or its affiliates)

Security Properties – Confidentiality
• The attacker’s observations (LowObs) is a deterministic function of the initial LowState,

the victim’s Output (same as LowState) and its own actions
• The attacker cannot observe anything other than what the victim explicitly allows in its output

• Formal model: any two LowState-identical behaviours of a system P, with the same
initial LowObs, have identical LowObs observations

∀ 𝜎", 𝜎# ⊨ 𝑃 ∶
(𝑳𝒐𝒘𝑶𝒃𝒔 𝜎"$ = 𝑳𝒐𝒘𝑶𝒃𝒔 𝜎#$ ∧
∀𝑖 ∈ 𝑁𝑎𝑡 ∶ 𝐿𝑜𝑤𝑆𝑡𝑎𝑡𝑒 𝜎"% = 𝐿𝑜𝑤𝑆𝑡𝑎𝑡𝑒 𝜎#%) ⇒

∀𝑖 ∈ 𝑁𝑎𝑡 ∶ 𝑳𝒐𝒘𝑶𝒃𝒔 𝜎"% = 𝑳𝒐𝒘𝑶𝒃𝒔 𝜎#%

(not valid TLA+ syntax)

12 © 2020 Arm Limited (or its affiliates)

Security Properties – Integrity
• The victim’s state is a deterministic function of the initial HighState, victim’s Input and

its own actions
• Victim’s execution (sequence of states) is not affected by the attacker beyond the Input provided

• Formal model: any two behaviours of a system P, with the same initial HighState and
same Input, have identical HighState and Output

∀ 𝜎", 𝜎# ⊨ 𝑃 ∶
(𝑯𝒊𝒈𝒉𝑺𝒕𝒂𝒕𝒆 𝜎"$ = 𝑯𝒊𝒈𝒉𝑺𝒕𝒂𝒕𝒆 𝜎#$ ∧
∀𝑖 ∈ 𝑁𝑎𝑡 ∶ 𝐼𝑛𝑝𝑢𝑡 𝜎"% = 𝐼𝑛𝑝𝑢𝑡 𝜎#%) ⇒

∀𝑖 ∈ 𝑁𝑎𝑡 ∶ (𝑯𝒊𝒈𝒉𝑺𝒕𝒂𝒕𝒆 𝜎"% = 𝑯𝒊𝒈𝒉𝑺𝒕𝒂𝒕𝒆 𝜎#% ∧
𝑶𝒖𝒕𝒑𝒖𝒕 𝜎"% = 𝑶𝒖𝒕𝒑𝒖𝒕 𝜎#%)

(not valid TLA+ syntax)

13 © 2020 Arm Limited (or its affiliates)

Confidentiality in TLA+

• Hyperproperties not supported directly, creating a new specification for two behaviours

𝑰𝒏𝒊𝒕 ≜ ∧ 𝐶𝑃𝑈1! 𝐼𝑛𝑖𝑡 ∧ 𝐶𝑃𝑈2! 𝐼𝑛𝑖𝑡
∧ 𝐶𝑃𝑈1! 𝐿𝑜𝑤𝑆𝑡𝑎𝑡𝑒 = 𝐶𝑃𝑈2! 𝐿𝑜𝑤𝑆𝑡𝑎𝑡𝑒
∧ 𝐶𝑃𝑈1! 𝐿𝑜𝑤𝑂𝑏𝑠 = 𝐶𝑃𝑈2! 𝐿𝑜𝑤𝑂𝑏𝑠

𝑵𝒆𝒙𝒕 ≜ ∨ ∃𝑖𝑛𝑠𝑡𝑟 ∈ 𝐸𝑥𝑒𝑐𝐼𝑛𝑠𝑡𝑟 ∶ (𝐶𝑃𝑈1! 𝐸𝑥𝑒𝑐 𝑖𝑛𝑠𝑡𝑟 ∧ 𝐶𝑃𝑈2! 𝐸𝑥𝑒𝑐 𝑖𝑛𝑠𝑡𝑟 ∧
𝑟𝑒𝑔𝑠1′ = 𝑟𝑒𝑔𝑠2′)

∨ ∃𝑖𝑛𝑠𝑡𝑟 ∈ 𝑆𝑝𝑒𝑐𝐼𝑛𝑠𝑡𝑟 ∶ 𝐶𝑃𝑈1! 𝑆𝑝𝑒𝑐 𝑖𝑛𝑠𝑡𝑟 ∧ 𝐶𝑃𝑈2! 𝑆𝑝𝑒𝑐 𝑖𝑛𝑠𝑡𝑟

𝑺𝒑𝒆𝒄 = 𝐼𝑛𝑖𝑡 ∧ □[𝑁𝑒𝑥𝑡]&'()

𝑻𝑯𝑬𝑶𝑹𝑬𝑴 𝑆𝑝𝑒𝑐 ⇒ □(𝐶𝑃𝑈1! 𝐿𝑜𝑤𝑂𝑏𝑠 = 𝐶𝑃𝑈2! 𝐿𝑜𝑤𝑂𝑏𝑠)

14 © 2020 Arm Limited (or its affiliates)

Confidentiality under Speculative Execution (high mode)

SET r3,h1
re1=d1
re2=l1
re3=0

re1=d1
re2=l1
re3=h1

OP r1,r3,r1
rs1=h2
rs2=l1
rs3=h1

LDR r1,[r1]
rs1=d1
rs2=l1
rs3=h1

OP r1,r2,r1
rs1=l1
rs2=l1
rs3=h1

LDR r2,[r1] cached[l1]=T
cached[l2]=F

SET r3,h1
re1=d1
re2=l1
re3=0

re1=d1
re2=l1
re3=h1

OP r1,r3,r1
rs1=h2
rs2=l1
rs3=h1

LDR r1,[r1]
rs1=d2
rs2=l1
rs3=h1

OP r1,r2,r1
rs1=l2
rs2=l1
rs3=h1

LDR r2,[r1]

h2 contains
secret data

Different values at h2 leads
to different low addresses

Executed Speculated

cached[l1]=F
cached[l2]=T

LowObs
identical

LowObs
different

𝝈0

𝝈0

𝝈1 𝝈2 𝝈3 𝝈4 𝝈5

𝝈1 𝝈2 𝝈3 𝝈4 𝝈5

15 © 2020 Arm Limited (or its affiliates)

Security Vulnerabilities in the Abstract Machine
• Spectre v1: confidentiality property violated by the speculating machine (SpecCPU)

• Software workarounds aim to make speculative execution deterministic of only non-confidential state

• Spectre v2: integrity of the victim's speculating machine affected through branch
predictor training by the attacker
• Software workarounds to make the speculative execution trace deterministic of the high state and

high mode input only

• Meltdown (v3): address space isolation not guaranteed by the speculating machine
(AccessOK in a low mode speculated Load instruction is TRUE for high addresses)
• Software workaround to enforce AccessOK by other means like KPTI (kernel page table isolation)

• Spectre v4 (Speculative Store Bypass): similar to Spectre v1 where the speculating
machine can read older instances of mem (prior to executed Store instructions)
• SSBD as hardware workaround, fine-grained SSBB as software workaround

16 © 2020 Arm Limited (or its affiliates)

Effects of (ARM) Barriers on the Abstract Machine
• CSDB (Consumption of Speculative Data Barrier): disallows the Havoc set of instructions

(or part of – data value prediction) in the speculating machine
• SSBB (Speculative Store Bypass Barrier): prevents Load instructions in the speculating

machine from reading older instances of mem prior to an executed Store instruction
• SB (Speculation Barrier): prevents subsequent instructions in the speculating

machine from changing the output of an observation function (e.g. LowObs)

17 © 2020 Arm Limited (or its affiliates)

Notable References
• Arm Limited. Vulnerability of Speculative Processors to Cache Timing Side-Channel

Mechanism whitepaper
• Lamport. Specifying Systems
• Subramanyan et al. A Formal Foundation for Secure Remote Execution of Enclaves
• Guarnieri et al. SPECTECTOR: Principled Detection of Speculative Information Flows
• Several other papers on non-interference and observational determinism
• Catalin Marinas. TLA+ model of the cache speculation side-channels

http://procode.org/cachespec/

http://procode.org/cachespec/

© 2020 Arm Limited (or its affiliates)

Thank You
Danke
Merci
谢谢

ありがとう
Gracias

Kiitos
감사합니다

ध"यवाद
ارًكش

ধন#বাদ
הדות

