[Jfommunity Event 2020

J —-—.
. 4"

Introduction

Why a formal model of cache speculation side-channels:
* A (simpler) way to reason about the behaviour of a system and its security properties

* Allows exploring similar vulnerabilities at an abstract level in a unified way
- Same specification can cover Spectre variants and Meltdown

Aim for the formal model:

* Does the CPU specification guarantee the security properties under speculative
execution for any code sequence?

Not covered:

* |Is a specific code sequence vulnerable under the CPU specification?

2 © 2020 Arm Limited (or its affiliates) a r m

Spectre vl Example

* Bypassing software checking of untrusted values (64-bit ARM assembly)

[X2]
X1

BGE out_of range

LDR X1,
CMP X0,
LDRB W4,
AND X4,
LSL X4,
ADD X4,
LDRB X7,

out of range

[X5, XO0]
X4, #1

X4, #8

X4, #0x200
[X8, X4]

3 © 2020 Arm Limited (or its affiliates)

//
//

//
//

//

X2 is a pointer to kernel array->length

X0 holds untrusted offset from user
X5 holds kernel array->data

arithmetic ops on potentially private data

X8 holds user array->data, X4 secret-derived

arm

Abstract Machine — State

* Constants (sets) and operation tables

LADDRS £ {l1,12, ...}

HADDRS 2 {h1,h2,..}
DATA £ {d1,d2, ...}
REGS £ {r1,72, ...}

ADDRS = LADDRS U HADDRS
VALUES 2 ADDRS U DATA U {“zero”

OPTABLES 2 [VALUES X VALUES — VALUES]

* CPU security/privilege mode

mode € {“low”, “high”}

4 © 2020 Arm Limited (or its affiliates)

CPU registers (array/function)

regs € [REGS - VALUES]

Register ri r2 r3 r4

Value d2 'dl 1 h1

Memory (array/function)

mem € [ADDRS — VALUES]
cached € [ADDRS - BOOLEAN|

Address 11 12 .. hl h2 ..
Value d2 |1 e d3 hl .
" F T "

Cached T F

arm

Abstract Machine — Actions (state transitions)
* Sets of valid instructions (tuples of mnemonic and arguments)

Havoc 2 {("SET”,r,v) : r € REGS,v € VALUES}
Move 2 {{"MOV”,rt,rm) : rt,rm € REGS}
Load £ {("LDR”,rt,rm) : rt,rm € REGS N AccessOK (regs|[rm])}
Store 2 {("STR”,rt,rm) : rt,rm € REGS N AccessOK (regs|rm])}
Op 2 {{"OP”,rt,rm,rn,op) : rt,rm,rn € REGS,op € OPTABLES}
Exception £ IF mode = “low” THEN {("HCALL”)} ELSE {("LRET")}

* The set of all possible valid instructions

Instructions £ Havoc U Move U Load U Store U Op U Exception

* Instruction dispatch/execution: Execute(instr)

5 © 2020 Arm Limited (or its affiliates) a r m

Program Execution as Succession of States

* Initial SimpleCPU state
Init £ A mode = “low”
ANregs = |r € REGS » "zero”]
Amem € [ADDRS — VALUES]
A cached = [a € ADDRS — FALSE]

* Next SimpleCPU step
Next 2 Jinstr € Instructions : Execute(instr)

o? ol o? o3 o4 o>

r1=0 ri=dl rl=d1 rl=dl rl=dl - =¥ rl=h2

=0 LSET r1,dl | 5_o [SETr2,1 _— HCALL | _, [SET r3,h1 - OF:r/l,r%,rl: o

r3=0 r3=0 r3=0 r3=0 r3=h1 " r3=h1
low high

6 © 2020 Arm Limited (or its affiliates)

arm

Abstract Model of Speculative Execution

* Speculative execution modelled as a “shadow” abstract machine (CPU) sharing the

mem and cached states with the executing machine but with a separate regs state
- Speculating machine supports a subset of Instructions, e.g. Load U Op

o’ o! o? o3 o4
Executing CPU r1=d1 r1=d1 N r1=d1
SET r3.h1l Conditional branch, new code path
r2=11 z M r2=1 - » r2=I1
or delayed STR to mem[h2]
r3=0 r3=h1l r3=h1
mem
cached eeee- , e , R ,
i rl=dl i rl=dl r---------- W rl=h2 poommeeee- » r1=d2 i rl=dl .
N i rp=in QP ILIM o)y | IOR LI g b M r2=I1 |
Speculating CPU | r3=0 ! ' r3=h1 1 r3=h1 r3=h1 ' r3=h1!
Executing (states in sync) Speculating (states differ) Spec state discarded

regs, =regs, regs; + regs, regs; =regs,

7 © 2020 Arm Limited (or its affiliates) a r m

TLA* Specification of Speculative Execution

* Speculating machine has its own registers
ExecCPU £ INSTANCE SimpleCPU
SpecCPU = INSTANCE SimpleCPU WITH regs < specregs

Speculating registers state discarded on (committed) instruction execution
Exec(instr) 2 ExecCPU! Execute(instr) A specregs’' = regs'’
Spec(instr) £ SpecCPU! Execute(instr) A\UNCHANGED (regs, mem)

Only certain instructions are available under speculation

ExecInstr 2 Havoc U Move U Load U Store U Op U Exception
SpecInstr £ Load U Op

Either execution or speculation
Next 2 Vv dinstr € Execlnstr : Exec(instr)
V dinstr € Specinstr : Spec(instr)

8 © 2020 Arm Limited (or its affiliates) a r m

Roles, States and Observations

Victim: high security mode (e.g. OS kernel)
* High mode state consists of CPU registers and high security memory

HighState = (regs,[addr € HADDRS - mem/|addr]])

* High mode input and output consist of CPU registers and low security memory
Input £ (regs, [addr € LADDRS - mem/|addr]])
Output = (regs, [addr € LADDRS - mem|addrl]])

9 © 2020 Arm Limited (or its affiliates)

arm

Roles, States and Observations

Attacker: low security mode (e.g. user application)

* Low mode state consists of CPU registers and user memory:

LowState £ (regs,[addr € LADDRS —» mem|addr]])

* Without side-channels, the attacker can only observe the values in low memory:

LowObs £ [addr € LADDRS — (mem|addr])]

* With cache side-channels, the attacker can additionally observe the cached state of a
memory location (e.g. by measuring the access time)

LowObs £ |addr € LADDRS - {(mem|addr], cached|addr])]

10 © 2020 Arm Limited (or its affiliates) a r m

Security Properties — Confidentiality

* The attacker’s observations (LowObs) is a deterministic function of the initial LowState,

the victim’s Output (same as LowState) and its own actions
- The attacker cannot observe anything other than what the victim explicitly allows in its output

* Formal model: any two LowState-identical behaviours of a system P, with the same
initial LowObs, have identical LowObs observations

Vo0, EP:
(LowObs (o) = LowObs(c5) A
Vi € Nat : LowState(ali) = LowState(azi)) =
Vi € Nat : LowObs(o{) = LowObs(o})

(not valid TLA* syntax)

11 © 2020 Arm Limited (or its affiliates) a r m

Security Properties — Integrity

* The victim’s state is a deterministic function of the initial HighState, victim’s Input and

its own actions
- Victim’s execution (sequence of states) is not affected by the attacker beyond the Input provided

* Formal model: any two behaviours of a system P, with the same initial HighState and
same Input, have identical HighState and Output

Voy,0, EP:
(HighState(o) = HighState(cy) A
Vi € Nat : Input(all) = Input(azl)) =
Vi € Nat : (HighState(o}) = HighState(d}) A
Output(o}) = Output(a}))

(not valid TLA* syntax)
12 © 2020 Arm Limited (or its affiliates) a r m

Confidentiality in TLA?

* Hyperproperties not supported directly, creating a new specification for two behaviours

Init 2 N CPU1!Init A CPU2! Init
A CPU1!' LowState = CPU2! LowState
A CPU1! LowObs = CPU2! LowObs

Next £ Vv dinstr € ExecInstr : (CPU1! Exec(instr) A CPU2! Exec(instr) A
regsl’ = regs2’)
V dinstr € Specinstr : CPU1! Spec(instr) A CPU2! Spec(instr)

Spec = Init AO[Next],qrs

THEOREM Spec = 0O(CPU1! LowObs = CPU2! LowOQObs)

13 © 2020 Arm Limited (or its affiliates) a r m

Confidentiality under Speculative Execution (high mode)

OP r1,r3;1

o? ol
rel=d1 rel=d1
r2=i1 | SETr3hL f 5y
r3=0 re3=h1l

Executed

o0
r.1=d1 v
o1 | SETr3,h1
re3=0

LowObs
identical

14

© 2020 Arm Limited (or its affiliates)

LDR r1,[r1]

\

o>

rs1=d2

» r.2=I1

rs3=h1

h2 contains

secret data

r1=I12

L R+2,[rl]

cached[I1]=T
cached[l2]=F

o>

Different values at h2 leads
to different low addresses

[
»

| 2

cached[l1]=F
cached[l2]=T

LowObs
different

arm

Security Vulnerabilities in the Abstract Machine

15

Spectre v1: confidentiality property violated by the speculating machine (SpecCPU)

- Software workarounds aim to make speculative execution deterministic of only non-confidential state
Spectre v2: integrity of the victim's speculating machine affected through branch
predictor training by the attacker

- Software workarounds to make the speculative execution trace deterministic of the high state and

high mode input only
Meltdown (v3): address space isolation not guaranteed by the speculating machine
(AccessOK in a low mode speculated Load instruction is TRUE for high addresses)

- Software workaround to enforce AccessOK by other means like KPTI (kernel page table isolation)

Spectre v4 (Speculative Store Bypass): similar to Spectre vl where the speculating

machine can read older instances of mem (prior to executed Store instructions)
- SSBD as hardware workaround, fine-grained SSBB as software workaround

© 2020 Arm Limited (or its affiliates) a r m

Effects of (ARM) Barriers on the Abstract Machine

* CSDB (Consumption of Speculative Data Barrier): disallows the Havoc set of instructions
(or part of — data value prediction) in the speculating machine

* SSBB (Speculative Store Bypass Barrier): prevents Load instructions in the speculating
machine from reading older instances of mem prior to an executed Store instruction

* SB (Speculation Barrier): prevents subsequent instructions in the speculating
machine from changing the output of an observation function (e.g. LowObs)

16 © 2020 Arm Limited (or its affiliates) a r m

Notable References

* Arm Limited. Vulnerability of Speculative Processors to Cache Timing Side-Channel
Mechanism whitepaper

* Lamport. Specifying Systems

 Subramanyan et al. A Formal Foundation for Secure Remote Execution of Enclaves
* Guarnieri et al. SPECTECTOR: Principled Detection of Speculative Information Flows
* Several other papers on non-interference and observational determinism

e (Catalin Marinas. TLA* model of the cache speculation side-channels
http://procode.org/cachespec/

17 © 2020 Arm Limited (or its affiliates) a r m

http://procode.org/cachespec/

© 2020 Arm Limited (or its affiliates)

- Thank You
Danke
 Merci
. TR

HYHED
Gracias
Kiitos

ZABHLIC

Tddlq
S RIBIM]
NTIN

